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Abstract

The rapid thermal motion of electrons along magnetic field lines represents a dominant process in
astrophysical and terrestrial plasmas. The purpose of this talk is to describe the incorporation of
this dominant physics in plasma fluid models.

In the first part of this talk, we discuss a closure scheme that incorporates the kinetic effects
of free-streaming, time-dependence, pitch-angle scattering and trapped electrons in the parallel
components of the heat flow and viscous stress tensor [?]. In the nearly collisionless limit, these
closures map onto previous collisionless expressions for the parallel heat flow and viscous stress [?].
It is emphasized that the physics of both the fluid and adiabatic limits is incorporated in a unified
formalism involving integrals along characteristics of the perturbed, non-Maxwellian part of the
distribution function.

In the second part of this talk, we discuss the implementation of the closure scheme in the plasma
fluid code NIMROD [?]. Over the course of a one-second simulation of a toroidal fusion experiment,
electrons traveling at 1/7 the speed of light travel millions of meters along the magnetic field.
Capturing the essential physics of this motion entails integrating kilometers along magnetic field
lines at a sufficient number of locations in the computational domain to resolve the parallel closure
dynamics. Modest estimates of the number of integrations needed at each time step exceed 10,000.
Results show that a massively parallel computational approach that has hundreds of processors
independently calculating the integral closure relations can be completed in a time comparable to
that needed for the advance of the fluid equations. A further numerical complication involves the
stiffness that results when the parallel closures are inserted into the fluid equations. In particular,
a semi-implicit time advance for the electron temperature equation is discussed. The semi-implicit
operator incorporates the anisotropic heat diffusion operator in the left side of the time-discretized
equation to provide numerical stability.

In the final part of this talk, the application of the closure scheme to studies of transport in
the vicinity of helical magnetic islands in tori of arbitrary aspect ratio and shaping is discussed.
Calculations show the importance of trapped particle effects which reduce parallel heat transport
by an order of magnitude in moderate-aspect-ratio (A ~ 3) tori. This reduction in parallel heat
flow can significantly alter electron temperature flattening across magnetic islands and hence the
development of neoclassical tearing modes, especially in low-aspect-ratio devices. The application
of the closure scheme to studies of heat transport along chaotic magnetic fields in reversed field
pinches (RFPs) is also discussed. Results show that the reduction due to particle trapping is
essential to accurate estimates of electron heat confinement times in RFPs.



Outline

e Motivation: Numerically simulate magnetized plasmas confined
by slowly evolving magnetic fields.

e Derive closed system of equations with general treatment of
parallel dynamics.

Parallel closures in homogeneous magnetic geometry.

Parallel closures in inhomogeneous magnetic geometry.

e Heat flow calculation for steady state magnetic field

in vicinity of helical magnetic island

along chaotic magnetic field

e Implementation of electron temperature equation in NIMROD.

implementation of field line integrations for closure calcula-
tion

implementation of semi-implicit operator to numerically sta-
bilize advance of temperature equation

e Conclusion



Two-fluid plasma codes evolve particle,
momentum and energy conservation
equations

e Evolution equations for density, n, flow, ‘7, and temperature,
T are:

where expressions for ion and electrons viscous stress tensors,
II, and the conductive heat flows, ¢ are required to close the
system.

e For nearly collisionless, magnetized plasmas, form of needed
closures are 2:
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where v, and v) are perpendicular and parallel particle speeds.

2Z. Chang and J. D. Callen, Phys Fluids B 4 , 1167 (1992).



Previous expressions for parallel heat flux
valid in collisional and collisionless limits.

e Collisional flux, 3
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TeVth, /Ooo dLT(L’ —L)—-T(L'+ L) .

L) =
al)="5p L/2

9

e Solve electron drift kinetic equation allowing for -

~N UV~ k:”'vth.

1. mode frequency, w ~ 7' ~ 1073 — 107,
2. collision frequency, v, ~ 1079,

3. transit frequency, k|vipe ~ 10~° in island, for example, and
k|vine ~ 0 at X-point

sS.1. Braginskii, “Transport processes in a plasma,” 1, edited by M.A. Leon-
tovich, Consultants Bureau, New York, 1965

*B.W. Hammett and F.W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).

sR.D. Hazeltine, Phys. Plasmas 5, 3282 (1998).



Collisional or collisionless parallel transport?

e Nature of parallel transport in vicinity of magnetic island varies.
Collisional near X-points: k”'vth/u — 0.

Moderately collisional inside island: kjv;,/v > 1
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Figure 1: Perturbed heat flow contours due to a 2/1 magnetic island.

e Closures should allow for arbitrary collisionality.



(General — Intractable?

e Model requirements for closures.

1. Relevant electron and ion kinetic equations

Drift kinetic equations (DKE)

2. Good collision operator

Lorentz pitch-angle scattering operator

3. Free-streaming and time-dependent physics
Integration involving characteristics.
4. General geometry

Arbitrary, axisymmetric toroidal geometry

e Closures must also be numerically tractable.

1. Time spent calculating closures ~ time for nonlinear step.

2. Closures must be robust, i.e., numerically stable.



Take Chapman-Enskog-like (CEL) approach.

e Write f as the sum of Maxwellian, fj;, and kinetic distortion,
F:
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and insert in
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e Use 3 lowest moment equations to write full CEL kinetic equa-

tion:
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e Why 5-moment CEL approach?
1. Keeps fluid and kinetic physics separate.

2. V and T (or p) readily available in most plasma fluid codes.
3. Density does not appear directly as drive.

4. Fewer fluid equations.

WARNING: 5-moment approach is less messy but requires
better solution of kinetic equation.



Gyroaverage full CEL kinetic equation,
ignore drifting and solve for parallel
dynamics.

e Gyroaveraging and projecting out dominant parallel part yields
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where o) - V will be written bvd/dL.

e Employ Lorentz scattering operator

_ vy, 0 9 OF
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where £ = v| /v, and expand in Legendre polynomials
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e Integrate along characteristics, 7 = L £ vt, to invert the advec-
tive operator.



Heat flow calculation involves integration
along field lines.

e Parallel heat flow definition was
2
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e Ignoring dq) /8L in inhomogeneous term and taking time-asymptotic
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e Recall that collisionless and collisional forms were
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Heat flux closure is approximate for
arbitrary collisionality.

e Heat flux for homogeneous magnetic field and sinusoidal tem-
perature perturbations.
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Modified heat flux closure is “exact” for
arbitrary collisionality.

e Ad hoc effective collision frequency, v.rs = 4.81y, brings heat
flux into agreement with collisional version

10°
10" |-
—
|_
=
>
= 10° |-
N’
~~
© CEL flux withv,, =4.8 v,
Braginskii flux
10°® Hammett-Perkins collisionless flux _
@) Chang-Callen collisionless flux
10" I I I I
10° 10° 10™ 10° 10° 10°
L /L

10



Multiple scalelengths add in nearly
collisionless regime.

e Doubling of heat flux in nearly collisionless regime due to ad-
ditional sinusoidal perturbation

T =sin(2wL/Lyy + =) +sin (2w L/Lys + =),

where LT2 = 10LT1.
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Important to account for long wavelength
features of temperature along field lines.

e General heat flux closure predicts heat can flow up local gradi-
ents by accounting for perturbations over longer scale lengths.
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Nearly collisionless closure truncates more
rapidly than collisionless closure.

e Kernal of nearly collisionless closure falls off more rapidly than
kernal of colliisonless closure. Here it was assumed that L, ¢, =
1.
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Bounce-averaged Lorentz collision operator
treated with expansion in pitch-angle
eigenfunctions.

e Introduce pitch-angle variable, £ = ++/1 — ABy, and solve fol-
lowing eigenvalue equation: 6
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Here the C,, replace the Legendre polynomials, P,, in ex-
pansion in pitch-angle basis functions.
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sJ. G. Cordey, Nuclear Fusion 16, 499 (1976).
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Parallel closures for finite |B| have same form
as |B|=o0 case.

e Define bounce-averaged parallel heat flux as

a) = —T( [ BvL P v F
|| !

e Summing over odd pitch-angle basis functions again yields

. o
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Here a;’s and k;’s contain collisional and passing particle
information.

e Could multiply collisionless and collisional forms by passing
particle fraction, f,.
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Incorporate 5 variations into closures for
trapped particle effects

e Only passing electrons carry heat over longer temperature gra-
dient scale lengths. In addition, trapped electrons act viscously
to slow down passing electrons.
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Figure 2: Heat flux for inhomogeneous magnetic field and sinusoidal temperature perturbation.
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Perturbed parallel heat flow contours due to
a 2/1 magnetic island.
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Particle trapping significantly reduces
parallel heat transport inside islands in
finite-aspect-ratio tori.

e Heat flux due to helical magnetic island shows order-of-magnitude
reduction in heat flux between A = co and A = 2.7.
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Previously poor electron heat confinement
in RFP’s interpreted as enhanced effective
radial thermal diffusivity, y,.

e Magnetic field line chaos responsible for electron temperature
flattening inside reversal surface.
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Single magnetic field line ergodically fills
volume inside reversal surface.
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In static calculation with |5/ =0, collisionality
controls y,.

® Xy increases with decreasing collisionality as more mobile elec-
trons become more efficient carriers of heat.
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General heat Aux closure predicts heat How
against local gradients.

e In small subset of cases heat flows against local gradients for
superimposed axisymmetric temperature profile. ”
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"E. D. Held, J. D. Callen, C. C. Hegna and C. R. Sovinec, Phys. Plasmas
8, 1171 (2001)
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Along single field line electrons see chaotic
distribution of short and long magnetic
mirrors.

e Short scale wiggles of axisymmetric field superimposed upon
longer wells delineated by the reversal surface.
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Perturbed magnetic field contributes

significantly to structure of trapped/passing
space.

e Variations in |B| along single field line depend upon field line
trajectories.
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Model short and long magnetic mirrors as
ideal sinusoidal perturbations in |B

e Model pitch-angle space by separating into two trapped dis-
tributions and one set of passing electrons to handle following
idealization:

|B| = Bj cos 2w L + B, cos 20w L.
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Islands in slab geometry good testbed for
heat Aux closure.

e Single-helicity island in slab geometry, periodic in Z and into
plane.

e Heat flux boundary condition imposed at R = 0.

Poloidal tlux
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Diffusive and CEL closures take different
forms.

e Want to solve

3 0T

30T _ g.z
2" Bt 1

e Diffusive heat flow uses
6'6’:6'I€6TZFLLV2T—|—6-(R” — k1)bb . VT,

where k| and k_ are the parallel and perpendicular scalar con-
ductivities.

e CEL closure expressible as
6-(1’:&LV2T—§-RLBB-6T+6-Q’”,

where g = qu).

e Temperature equation stabilized numerically with self-adjoint,
semi-implicit operator, G, on left side.

8
1+ Ath)a—:: — K(T).

e Time-discretized equation written as
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ificant

1011S require Ssigii

Closure calculat

computational effort.

e Processors integrate ~ 103 m for single heat flux calculation to

converge with T, ~ 1000eV, v ~ 2 X 107 and Ly, fp ~ 100m.

10% timesteps involves integrating

e Require 10* q| calculations per toroidal harmonic performed at
107 per simulation.
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Evolution of temperature profile across
O-point shows significant flattening with
Toe = 1000eVy ng. = 5 x 108 and dt = .1ms.
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Semi-implicit operator slows down
temperature evolution with dt = 1ms.
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Figure 3: Temperature profile evolution with dt = 1.0ms, Ty, = 1000eV and ng, = 1013.
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At large time steps (dt=1oms) semi-implicit
operator introduces errors into evolution but
generates correct equilibrium solution.
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Figure 4: Temperature profile evolution with dt = 10.0ms, Ty, = 1000eV and ng, = 10'3.
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Errors introduced by semi-implicit operator
scale linearly with timestep.
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Figure 5: On axis temperature versus time for dt = .1,1, and 10ms.
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Conclusions

e General parallel closure scheme devised to allow for arbitrary
collisionality and trapped particle effects.

e Preliminary calculations of parallel heat flow along chaotic mag-
netic field and in vicinity of helical island show importance of
proper treatment of collisionality and |B| variations.

e Robust temperature flattening inside islands predictied by par-
allel heat flow closure.

e CEL heat flow time ~ temperature equation solve time

e Full implementation of complete closure model promises novel
results from NIMROD simulations of plasmas confined by re-
sistively evolving magnetic fields.
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